
Documentation
for :

qCNC control unit

 by

Trilog Studios (Ron Ablinger)
mailto://trilog_studios@nerdshack.com

Programming languages:
C/C++

Qt4

Target Platform :
Linux/Unix

Requirements :
qextserialport

Linux development headers

Developer Documentation

mailto://trilog_studios@nerdshack.com

Table of Contents
1Introduction ...3
2Concept..3
3Ethernet (TCP/IP)..4

3.1Communication structure...4
3.2PC/client Task...5

3.2.1Pause job...6
3.2.2Kill job ...6
3.2.3Reset/Clear job..6
3.2.4Send coordinates...6
3.2.5Init readytosend..6

3.3Server task..7
3.4OpCode...7

3.4.1Opcode table...7
4Serial debug..8
5Interface/GUI...8

5.1Main Window...8
5.2Serial debug window..9
5.3Job preview...9
5.4Job Status..10

6Gcode phrasing...11
6.1Important instruction sets...11
6.2General information..11
6.3Phrased gcode information...12

7General information to code...12
8Settings files...13

8.1Program settings...13
8.2TCP/IP settings...13
8.3Serial settings...13

9References ...14
10Disclaimer..14
11Interfaces.h...15

1

1 Introduction
This document houses the developers documentation for qCNC control unit, from which the program
code can be understood and expanded. I will only cover the main features of the program as most of the
code is self explanatory.

QCNC control unit was written for the sole purpose of controlling a ethernut development board,
which is running a ucos operating system. Its main communication is via Ethernet connecting through
the Linux supplied socket.h library. On the ethernut board, the TCP/IP stack was supplied by M.
Zauner. For more information on the exact functionalities of the ucos stack, please consult either the
ucos Documentation, or that of the respective Ethernet Stack.

I will cover :

1. G-code phrasing

2. Ethernet

1. PC/Client tasks

2. Server tasks

3. Communication structure

4. protocol opCode

3. Serial debugging

4. Interface/GUI

2 Concept
It was given, that we had a ethernut development board, which needed to be connected via Ethernet to
a PC control program. The ethernut boards would have a ucos OS running on it, which in turn then
controlled a CNC machine.

The Task of the PC program, was to initiate a TCP/IP connection to the server of the ucos system, then
communicate with it, sending coordinates read from a g-code file.

Concentrating on the GUI interface, it can connect to a TCP/IP server and a rs232 interface, read g-
code files, periodically polls socket connection, if connected and draw a preview of the resulting job.

It was written with Qt4 and C/C++. It is unthreaded, since previous attempts caused de-
synchronisations.

2

3 Ethernet (TCP/IP)

3.1 Communication structure

Here we had to fathom out what the CNC needs, and what capabilities the ethernut board has.

We decided on a struct type so that one set of coordinates can be sent at once, also having the ability, to
send system commands and instructions, without having to change the data-type. All used structures
and data protocols can be found within Interfaces.h.

For the TCP/IP connection, following structure was used :

This code snippet, shows a struct, that houses float variables. Data-type float was chosen because of the
limited capability of the ATMEGA128 MCU, that powers the ethernut board.

3

typedef struct {
 float x;
 float y;
 float z;
 float status;
 float error;
}protocol;

Code snippet 1: TCP/IP communication structure

3.2 PC/client Task

4

Function flow 1: int TCP_control() flow

Function flow 1 show the workings of the function TCP_control() which is called periodically if
connected to socket.

For one, it try 's to keep the connection in a ISALIVE state if a specific amount of time has passed. If a
connection is lost, it is reported to the calling function, which then evaluates the next step.

Also if a first connect is made, a reply from the server is waited on. If the reply is received, the system
is set to READYTOSEND. If READYTOSEND is achieved, it can send different opcode’s, CNC modes
and the coordinates.

3.2.1 Pause job

The ability to pause the process is not of major importance, but if supported, the process can be paused
immediately within any state. If a resume is called, the program falls back into its previous state.

3.2.2 Kill job

 The kill opcode will stop all activity on the ethernet board and disconnects active socket connection. If
called, it will take up to one timer-periode to achieve the the state.

3.2.3 Reset/Clear job

Both opcodes are in principle the same, but Reset also terminates all active connections.

3.2.4 Send coordinates

If the client is in a READYTOSEND state, coordinates will be sent. Two different states can be returned.
NEXT or RESEND can be returned to the caller function. A NEXT will move ahead in the linked list, a
RESEND will resend previous coordinates.

3.2.5 Init readytosend

This is the first function called. It requests a READYTOSEND from the server. If server replies with
READYTOSEND coordinates will be sent periodically.

More information can be found within the opCode section.

5

3.3 Server task

The Server has to accept socket connections and respond to different opcodes, that are passed to it. It
also has to issue specific commands to the entire system and decide on were the received data has to be
sent. EG. If data is received with a .status = 1 the data needs to be sent to the motor/MCP task.

For a closer look at the Server task, please refer to the TCP/IP server task Documentation by M.
Ziervogel.

3.4 OpCode

The opCode within this system is based on a unique combination of the values that the variables status
and x hold. These opcodes can either be used to issue a command to the ethernut board, to
acknowledge received and executed command and keep connections alive.

3.4.1 Opcode table

It is important to be careful with the kill commands. To use them, you have to activate them within the
preferences settings. These will be active by default, but once deactivated, a bug occurs, that will
disable the whole control.

6

Table 1: Opcode Table

value of protocol::status value of protocol::x Origin Destination Function Implementation status Response
1 1 N/A GUI MCP a set of coordinates OK 16
2 2 N/A GUI oLED sync coordinates to oLED TODO 16
3 3 N/A GUI TCP/DEBUG TCP/Serial specific command TODO 16
4 4 N/A ethernut GUI sync coordinates from oLED TODO 16
5 15 15 GUI TCP file transaction mode OK 16
6 15 6 GUI TCP coordinates are taken from control within gui PARTIALLY 16
7 15 9 GUI TCP standalone mode disconnect TCP clients data from oLED OK 16
8 99 0 GUI TCP reset, clear memory set CNC to 0/0/0 OK 16
9 99 99 GUI TCP issue kill command OK 16

10 99 199 GUI TCP pause request must return (11) OK 11
11 99 201 GUI TCP pause achieved, must be responded to (10) OK N/A
12 200 30 TCP GUI coordinates OK, send next set OK 1
13 200 50 GUI TCP OK 16
14 200 60 TCP GUI coordinates error, resend request OK 1
15 200 78 GUI TCP Init request/connection ok? OK 16
16 200 101 N/A N/A global acknowledge OK N/A
17 200 199 GUI TCP alive request must return (18) OK 18
18 200 999 TCP GUI connection still alive response from (17) OK N/A

NONCRITICAL task assignment
NORMAL operation
KILL Commands (needs to activated within preferences)

READYTOSEND request

4 Serial debug
The Serial debug interface was conceptualised to also be able to send commands to the ethernut board.
But due to lack of time, this was reduced to only receive messages via the rs232 interface.

Current status:

The interface is poled continuously until data is received, which then emits a signal, that data is
available. It the is relayed to the debugging window and added to the listbox.

5 Interface/GUI

5.1 Main Window

7

CNC Mode selection

MenuBar

Tab menu

Kill command
menuobject

Controls for GUI
control mode not fully
implemented yet

5.2 Serial debug window

5.3 Job preview

8

Controls for GUI
control mode not fully
implemented yet

Serial command
issuing prompt.
Commands not yet
implemented

Debug tracker
message consists of
issuing function|
destination[messagetyp
e]:->Message

Previews the g-code
file. Also shows the
path of the CNC
machine

5.4 Job Status

9

Internal Message board

Current CNC position

ucos task status, data
via serial, not yet
implemented into ucos

6 Gcode phrasing
G-code files, are files that hold axis and instruction for different types of constructions. It could hold
information for different points within a 3D design of a house or, as in our case, the information to
draw a hello kitty.

6.1 Important instruction sets

M30 – end of data

M03/M04 – spindle on

M05 – spindle off

M01 – pause

G90 – absolute coordinates

G91 – incremental coordinates

G01 – linear cutting

Nx – Line numbering

X – x-coordinates

Y – y-coordinates

Z – z-coordinates

6.2 General information

For the sake of ease, we have found that our conversion program always wrote G90 and G01 int the
gcode file. Since there is no standard for that file-type, we assumed that our conversion tool generated
the gcode's that we then use. In other words, default is G90 and G01 and is therefore not extracted by
the decoder.

10

6.3 Phrased gcode information

The coordinates that the gcode supplies, are stored in a linked list consisting of a custom struct.

Since the file is read from top to bottom, ie. Begin to end, the coordinates are saved in reverse and will
also be drawn from the official end to its beginning, which does not matter, in my humble opinion.

7 General information to code
Within the code directory, numerous files can be found:

<rootofprogramsouce> -/settings/

-/*.tss

-/resources/*.png

-/lib/

-/qextserialport/

-/*c && *h

-/build/*.so.*

-/*.cpp && *.h

Interfaces.h holds all the custom structures for the program.

The rest of the source files, are self-explanatory by name.

To run qCNC we have to export the LD_LIBRARY_PATH to point to either your current build, or to
the pre-compiled ones found in <extractedpath>/lib/qextserialport/build.

Run the following in the terminal from where you want to start it:

$ export LD_LIBRARY_PATH=../qCNC/lib/qextserialport/build/

or add the following to ~/.bashrc

$ export LD_LIBRARY_PATH=<fullpathto>/qCNC/lib/qextserialport/build/

11

struct gcode_linkedL {
 gcode_linkedL *next;
 double x;
 double y;
 double z;
 int abs; //absolute incremental
};

Codesnippet 2: gcode linked list structure

8 Settings files
The settings will be read every time the program starts. If any changes have occurred, program needs to
be restarted to activate those changes.

'#' - comment.

'TSS' – has to present somewhere within settings file to confirm validity.

'|' - separates the name of the setting <on the left> with its respective value <on the right>

8.1 Program settings

'PROG_enLOG' – 0/1 – sets logging support (not yet implemented)

'PROG_LOGP' – string with all printable characters except for '|' and '#' - shows path to logfile

'PROG _UARTDB' – 0/1 – enables rs232 debugging commands (not yet implemented)

'PROG_CNCkill' – 0/1 – enables CNC kill commands – enabled by default due to bug

8.2 TCP/IP settings

'INET_ADD' – xxx.xxx.xxx.xxx – IP address to which to connect to.

'INET_PORT' – 6666 – integer for port number corresponding to the address specified at 'INET_ADD'

'INET_DEL' – x ms – integer defines default timeout before reporting connection as dead (not yet
implemented)

8.3 Serial settings

'SERIAL_DEV' -string with all printable characters except for '|' and '#' - rs232 device mapped on
system

12

9 References

Qextserialport – http://qextserialport.sourceforge.net – Brandon Fosdick & Michal Polich

QT4 – http://qt.nokia.com – Qt developers Trolltech & Nokia

10 Disclaimer
I used a self-build hybrid of Fedora <http://fedoraproject.org/> and Gentoo <http://www.gentoo.org>.
I build most of my software from source and use the Gentoo Portage package manager which also
compiles from Source tarball's. This paper has been written and everything was done on this system, it
is possible that the exact command sequences may vary from system to system, but the concepts are the
same, and most of the commands are included in every standard Linux distribution. Furthermore, I
will not be held responsible for damage to you system. USE at own risk.

This work is published and released under the CC <http://creativecommons.org/licenses/by-nd-
nc/1.0/>(Creative Common) and GPLv2 <http://www.gnu.org/licenses/gpl-2.0.html>(General Public
License version 2).

13

http://www.gnu.org/licenses/gpl-2.0.html
http://creativecommons.org/licenses/by-nd-nc/1.0/
http://creativecommons.org/licenses/by-nd-nc/1.0/
http://www.gentoo.org/
http://fedoraproject.org/
http://qt.nokia.com/
http://qextserialport.sourceforge.net/

11 Interfaces.h

14

#define DEBUG 1
#define STANDALONE 0
#define INTERNAL 0
#define ERROR 0

typedef struct {
 float x;
 float y;
 float z;
 float status; //0-9 used for status-tagging
 float error; //0-9 used for internal error managment
}protocol;

struct gcode_linkedL {
 gcode_linkedL *next;
 double x;
 double y;
 double z;
 int abs; //absoluto incremential
};

struct Suart_debug {
 int type;
 char sender[10];
 char destination[10];
 char opcode[10];
 int opcodev;
};

struct gui_settings {
 //serial device settings
 QString SerialDevice; //device

 //TCP settings
 QString TCPaddress; //address
 qint32 TCPport; //port
 qint16 TCPStdtimeout; //std timeout

 //Program settings
 QString Proglogpath;
 qint16 Progenlog;
 qint16 Progenuartdb;
 qint16 Progenkill;
 qint16 ProgDevCNCmode;
};
struct tcpset {
 //TCP settings
 QString TCPaddress; //address
 qint32 TCPport; //port
 qint16 TCPStdtimeout; //std timeout
};
struct progset {
 QString Proglogpath;
 qint16 Progenlog;
 qint16 Progenuartdb;
 qint16 Progenkill;
 qint16 ProgDevCNCmode;
};
struct serialset {
 QString SerialDev;
};

Codesnippet 3: extract from interfaces.h

	1 Introduction
	2 Concept
	3 Ethernet (TCP/IP)
	3.1 Communication structure
	3.2 PC/client Task
	3.2.1 Pause job
	3.2.2 Kill job
	3.2.3 Reset/Clear job
	3.2.4 Send coordinates
	3.2.5 Init readytosend

	3.3 Server task
	3.4 OpCode
	3.4.1 Opcode table

	4 Serial debug
	5 Interface/GUI
	5.1 Main Window
	5.2 Serial debug window
	5.3 Job preview
	5.4 Job Status

	6 Gcode phrasing
	6.1 Important instruction sets
	6.2 General information
	6.3 Phrased gcode information

	7 General information to code
	8 Settings files
	8.1 Program settings
	8.2 TCP/IP settings
	8.3 Serial settings

	9 References
	10 Disclaimer
	11 Interfaces.h

